Serveur d'exploration Cyberinfrastructure

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

An Open Source Application Framework for Astronomical Imaging Pipelines

Identifieur interne : 000B48 ( Main/Exploration ); précédent : 000B47; suivant : 000B49

An Open Source Application Framework for Astronomical Imaging Pipelines

Auteurs : T. Axelrod [États-Unis] ; J. Kantor [États-Unis] ; R. H. Lupton [États-Unis] ; F. Pierfederici [États-Unis]

Source :

RBID : Pascal:11-0004476

Descripteurs français

English descriptors

Abstract

The LSST Data Management System is built on an open source software framework that has middleware and application layers. The middleware layer provides capabilities to construct, configure, and manage pipelines on clusters of processing nodes, and to manage the data the pipelines consume and produce. It is not in any way specific to astronomical applications. The complementary application layer provides the building blocks for constructing pipelines that process astronomical data, both in image and catalog forms. The application layer does not directly depend upon the LSST middleware, and can readily be used with other middleware implementations. Both layers have object oriented designs that make the creation of more specialized capabilities relatively easy through class inheritance. This paper outlines the structure of the LSST application framework and explores its usefulness for constructing pipelines outside of the LSST context, two examples of which are discussed. The classes that the framework provides are related within a domain model that is applicable to any astronomical pipeline that processes imaging data. Specifically modeled are mosaic imaging sensors; the images from these sensors and the transformations that result as they are processed from raw sensor readouts to final calibrated science products; and the wide variety of catalogs that are produced by detecting and measuring astronomical objects in a stream of such images. The classes are implemented in C++ with Python bindings provided so that pipelines can be constructed in any desired mixture of C++ and Python.


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">An Open Source Application Framework for Astronomical Imaging Pipelines</title>
<author>
<name sortKey="Axelrod, T" sort="Axelrod, T" uniqKey="Axelrod T" first="T." last="Axelrod">T. Axelrod</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Steward Observatory, 933 N Cherry Ave</s1>
<s2>Tucson, AZ, 85721</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Tucson, AZ, 85721</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kantor, J" sort="Kantor, J" uniqKey="Kantor J" first="J." last="Kantor">J. Kantor</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>LSST Corporation, 933 N Cherry Ave</s1>
<s2>Tucson, AZ, 85721</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Tucson, AZ, 85721</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lupton, R H" sort="Lupton, R H" uniqKey="Lupton R" first="R. H." last="Lupton">R. H. Lupton</name>
<affiliation wicri:level="4">
<inist:fA14 i1="03">
<s1>Princeton University, 134 Peyton Hall</s1>
<s2>Princeton, NJ, 08544-1001</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Princeton, NJ, 08544-1001</wicri:noRegion>
<orgName type="university">Université de Princeton</orgName>
<placeName>
<settlement type="city">Princeton (New Jersey)</settlement>
<region type="state">New Jersey</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pierfederici, F" sort="Pierfederici, F" uniqKey="Pierfederici F" first="F." last="Pierfederici">F. Pierfederici</name>
<affiliation wicri:level="2">
<inist:fA14 i1="04">
<s1>Space Telescope Science Institute, 3700 San Martin Drive</s1>
<s2>Baltimore, MD 21218</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">11-0004476</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 11-0004476 INIST</idno>
<idno type="RBID">Pascal:11-0004476</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000168</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000077</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">000155</idno>
<idno type="wicri:doubleKey">0277-786X:2010:Axelrod T:an:open:source</idno>
<idno type="wicri:Area/Main/Merge">000B54</idno>
<idno type="wicri:Area/Main/Curation">000B48</idno>
<idno type="wicri:Area/Main/Exploration">000B48</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">An Open Source Application Framework for Astronomical Imaging Pipelines</title>
<author>
<name sortKey="Axelrod, T" sort="Axelrod, T" uniqKey="Axelrod T" first="T." last="Axelrod">T. Axelrod</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Steward Observatory, 933 N Cherry Ave</s1>
<s2>Tucson, AZ, 85721</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Tucson, AZ, 85721</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kantor, J" sort="Kantor, J" uniqKey="Kantor J" first="J." last="Kantor">J. Kantor</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>LSST Corporation, 933 N Cherry Ave</s1>
<s2>Tucson, AZ, 85721</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Tucson, AZ, 85721</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lupton, R H" sort="Lupton, R H" uniqKey="Lupton R" first="R. H." last="Lupton">R. H. Lupton</name>
<affiliation wicri:level="4">
<inist:fA14 i1="03">
<s1>Princeton University, 134 Peyton Hall</s1>
<s2>Princeton, NJ, 08544-1001</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Princeton, NJ, 08544-1001</wicri:noRegion>
<orgName type="university">Université de Princeton</orgName>
<placeName>
<settlement type="city">Princeton (New Jersey)</settlement>
<region type="state">New Jersey</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pierfederici, F" sort="Pierfederici, F" uniqKey="Pierfederici F" first="F." last="Pierfederici">F. Pierfederici</name>
<affiliation wicri:level="2">
<inist:fA14 i1="04">
<s1>Space Telescope Science Institute, 3700 San Martin Drive</s1>
<s2>Baltimore, MD 21218</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Proceedings of SPIE, the International Society for Optical Engineering</title>
<title level="j" type="abbreviated">Proc. SPIE Int. Soc. Opt. Eng.</title>
<idno type="ISSN">0277-786X</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Proceedings of SPIE, the International Society for Optical Engineering</title>
<title level="j" type="abbreviated">Proc. SPIE Int. Soc. Opt. Eng.</title>
<idno type="ISSN">0277-786X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Astrophysics</term>
<term>Capability index</term>
<term>Catalogs</term>
<term>Database management system</term>
<term>Image sensor</term>
<term>Imaging</term>
<term>Inheritance</term>
<term>Measurement sensor</term>
<term>Middleware</term>
<term>Modeling</term>
<term>Object oriented</term>
<term>Open source software</term>
<term>Pipeline processor</term>
<term>Software development</term>
<term>Streaming</term>
<term>object oriented framework</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Logiciel libre</term>
<term>Formation image</term>
<term>Processeur pipeline</term>
<term>Système gestion base donnée</term>
<term>Intergiciel</term>
<term>Orienté objet</term>
<term>Développement logiciel</term>
<term>Capteur mesure</term>
<term>Détecteur image</term>
<term>Transmission en continu</term>
<term>Astrophysique</term>
<term>Indice aptitude</term>
<term>Catalogue</term>
<term>Héritage</term>
<term>Modélisation</term>
<term>.</term>
<term>Cadriciel</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Catalogue</term>
<term>Héritage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The LSST Data Management System is built on an open source software framework that has middleware and application layers. The middleware layer provides capabilities to construct, configure, and manage pipelines on clusters of processing nodes, and to manage the data the pipelines consume and produce. It is not in any way specific to astronomical applications. The complementary application layer provides the building blocks for constructing pipelines that process astronomical data, both in image and catalog forms. The application layer does not directly depend upon the LSST middleware, and can readily be used with other middleware implementations. Both layers have object oriented designs that make the creation of more specialized capabilities relatively easy through class inheritance. This paper outlines the structure of the LSST application framework and explores its usefulness for constructing pipelines outside of the LSST context, two examples of which are discussed. The classes that the framework provides are related within a domain model that is applicable to any astronomical pipeline that processes imaging data. Specifically modeled are mosaic imaging sensors; the images from these sensors and the transformations that result as they are processed from raw sensor readouts to final calibrated science products; and the wide variety of catalogs that are produced by detecting and measuring astronomical objects in a stream of such images. The classes are implemented in C++ with Python bindings provided so that pipelines can be constructed in any desired mixture of C++ and Python.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Maryland</li>
<li>New Jersey</li>
</region>
<settlement>
<li>Princeton (New Jersey)</li>
</settlement>
<orgName>
<li>Université de Princeton</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Axelrod, T" sort="Axelrod, T" uniqKey="Axelrod T" first="T." last="Axelrod">T. Axelrod</name>
</noRegion>
<name sortKey="Kantor, J" sort="Kantor, J" uniqKey="Kantor J" first="J." last="Kantor">J. Kantor</name>
<name sortKey="Lupton, R H" sort="Lupton, R H" uniqKey="Lupton R" first="R. H." last="Lupton">R. H. Lupton</name>
<name sortKey="Pierfederici, F" sort="Pierfederici, F" uniqKey="Pierfederici F" first="F." last="Pierfederici">F. Pierfederici</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/CyberinfraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B48 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000B48 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    CyberinfraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     Pascal:11-0004476
   |texte=   An Open Source Application Framework for Astronomical Imaging Pipelines
}}

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Thu Oct 27 09:30:58 2016. Site generation: Sun Mar 10 23:08:40 2024